SYNTHESE ET PROPRIETES DU 4-NITRO ET DU 4-AMINO [2.2.2] METACYCLOPHANE. A.MAQUESTIAU, Y.VAN HAVERBEKE, R.FLAMMANG et M.FLAMMANG-BARBIEUX⁽¹⁾.

Service de Chimie Organique, Faculté des Sciences, Université de l'Etat, 19, avenue Maistriau, Mons (Belgique).

(Received in France 1 March 1973; received in UK for publication 8 March 1973)

Des effets d'interaction transannulaire sont couramment invoqués pour expliquer le comportement des [2.2] para- $(^{2},^{3})$, [2.2] métapara- $^{(4)}$ et [2.2] métacyclophanes $(^{5},^{6)}$ vis à vis de réactions de substitution électrophile. Dans le cas du [2.2] métacyclophane, par exemple, de telles réactions conduisent en général au système tétrahydropyrénique.

Récemment, Tabushi et coll. $(^{7,8})$ ont synthétisé quelques dérivés monosubstitués des [2.2.2]- et [2.2.2.2] paracyclophanes afin de mettre en évidence une éventuelle interaction transannulaire entre "noyaux benzéniques plans ". A part quelques anomalies, les effets de substituants observés en résonance magnétique nucléaire sont semblables à leurs correspondants benzéniques.

Nous nous sommes intéressés à la réaction de nitration du [2.2.2] métacyclophane (I). Contrairement à son isomère *para*, cet hydrocarbure présente trois positions de nitration possibles : 4, 5 et 8.

(I) R = H(II) $R = NO_2$ (III) $R = NH_2$

La nitration de 1 g de (I) (synthétisé par une réaction de Wurtz intermoléculaire sur le m-dibromoxylylène (9,10)) est effectuée par l'acide nitrique fumant en milieu acide acétique-anhydride acétique. Par chromatographie sur silice (cyclohexane-benzène 9/1), on isole 236 mg d'un dérivé mononitré (F : 125-126° (EtOH), Masse mol. : 357 (SM), Analyse centésimale (*) : trouvé :C : 80,7 % H : 6,5 %, N : 3,8 % ; calculé : C : 80,6 % ; H : 6,5 % ; N : 3,9 %). L'élution au benzène fournit 145 mg d'une huile jaune, mélange de produits diet tripitrés. L'examen du spectre de résonance magnétique pucléaire de ce mé-

et trinitrés. L'examen du spectre de résonance magnétique nucléaire de ce mélange permet de conclure à une mononitration de chacun des noyaux ; les protons intérieurs H₁₆ et/ou H₂₄ apparaissant sous forme de doublet J = 2 Hz.

L'analyse centésimale a été effectuée dans les laboratoires de microanalyse Bernhardt.

Le spectre de masse montre une dégradation de l'ion moléculaire (m/e 357), par perte de 17 puis de 28 u.m.a. (élimination de OH, puis de CO).Ce schéma de fragmentation est confirmé par des transitions métastables à 323,7 et 272,7 u.m.a. La perte de OH est caractéristique des nitrobenzènes portant un substituant alkylé en position *ortho*⁽¹¹⁾, ce comportement se retrouve dans le cas des 5-NO₂-[3.3] paracyclophane⁽¹²⁾ et 4-NO₂ [2.2.2] paracyclophane⁽⁷⁾.

Les spectres de R.M.N. relevés dans le $CDC1_3$ (Fig. I) et le C_6D_6 démontrent de manière définitive la structure proposée.

Les déplacements chimiques des protons du [2.2.2] métacyclophane et de ses dérivés sont réunis dans le tableau I.

R	^H 5	^H 6	Н8	^H 16 ^{0u} H24	^H 16 _{H24} ou	сн ₂
<u>Solvan</u>	t : CDC1 ₃					
H (I)	2,91	3,12	3,86	3,86	3,86	7,23 (s;12H)
NO ₂ (II)	2,27 (d:J=8Hz)	< 3,10	4,04 (d:J=2Hz)	3, 86 (t)	3,65 (t)	7,10 7,20 6,98 (s;4H) (s;4H) (A ₂ B ₂ ;4H)
NH ₂ (III)	3,53 (d:J=8Hz)	3,30 (dd:J=8 & 2Hz)	3,95 (d:J=2Hz)	3,90 (t)	3,73 (t)	7,32 $7,26$ $7,22(s;4H) (A2B2;4H) (s;4H)$
Solvan	<u>t</u> : C ₆ D ₆					
H (I)	2,96	3,13	3,85	3,85	3,85	7,36 (s;12H)
NO ₂ (II)	2,51 (d:J=8Hz)	3,58 (dd:J=2 & 8Hz)	4,25 (d:J=2Hz)	4,03 (t)	3,89 (t)	$^{7,51}_{(A_2B_2;4H)(s;4H)}$ $^{7,10}_{(A_2B_2;4H)(s;4H)}$
^{NH} 2 (III)	3,70 (d:J=8Hz)	3,34 (dd:J=2 & 8Hz)	3,90 (d:J=2Hz)	3,87 (t)	3,67 (t)	7,36 (m;12H)

TABLEAU I. (τ en ppm).

Les spectres de R.M.N. sont relevés sur un appareil Varian XL 100-15 (100 MHz); référence interne : TMS, s: singulet ; d : doublet ; dd : double doublet ; t : triplet ; m : massif. Des expériences de découplage de spin confirment l'attribution des protons 5, 6 et 8.

En solution chloroformique, l'hydrogène en *ortho* du groupe nitro (H_5) apparaît déblindé (0,64 ppm) et le proton en *méta* (H_8) blindé (0,18 ppm)par rapport aux protons correspondants dans l'hydrocarbure non substitué (I). Au contraire, dans le 4-nitro-*méta*-xylène, ils sont déplacés vers les fréquences élevées. Les protons intérieurs H_{16} et H_{24} absorbent sous forme de triplets non résolus à τ = 3,86 et 3,65 ppm ; H_6 n'est pas observable dans le spectre et doit être déblindé de 5 Hz au minimum.

Le blindage spécifique observé pour le proton H_8 (18 Hz) pourrait s'interpréter par une augmentation de la population en une conformation privilégiée dans laquelle le cycle portant le groupe nitro serait presque perpendiculaire à un autre noyau benzénique ; le courant circulaire diamagnétique de ce dernier provoquant alors un abaissement de fréquence d'absorption du proton H_8 .

Les hydrogènes méthyléniques apparaissent sous forme de deux singulets et d'un système A_2B_2 .

En solution benzénique, tous les protons du noyau substitué subissent un effet de blindage par rapport au spectre relevé dans le $CDCl_3$; le proton H₆ sort du massif des hydrogènes aromatiques (dd;J₀ = 8 Hz, J_m = 2Hz). Les hydrogènes méthyléniques se présentent ici sous la forme d'un singulet et de deux systèmes A_2B_2 .

La réduction de (II) par le mélange hydrate d'hydrazine/palladium sur carbone en solution éthanolique conduit au 4-amino [2.2.2] métacyclophane (III) (F.104-105°; M. 327 (SM)).

Les spectres de résonance magnétique nucléaire relevés dans $CDC1_3$ (Fig. 2) et C_6D_6 permettent une attribution aisée des protons H_5 , H_6 et H_8 (Tableau I).Celle-ci est confirmée par l'utilisation de Eu(DPM)₃.

Les effets de substituants ortho et méta du groupe amino sont dans ce cas, analogues à ceux observés en série benzénique (S_o : - 0,62 ppm ; S_m : - 0,18 et - 0,09 ppm). L'utilisation d'agents chélatants tels que le *tris* (3-(trifluorométhylhydroxyméthylène)-*d*-camphorato) europium^{III} ne nous a pas permis de mettre en évidence une activité optique éventuelle de la molécule de 4-amino [2.2.2] métacyclophane^(13,14).

BIBLIOGRAPHIE.

- Une partie du présent travail a été réalisée avec la collaboration de R. DEMOUSTIER (R. DEMOUSTIER, mémoire de licence, Université de l'Etat à Mons (1972)).
- 2. D.J. CRAM et N.L. ALLINGER, J. Amer. Chem. Soc., 77, 6289 (1955).
- 3. H.J. REICH et D.J. CRAM, J. Amer. Chem. Soc., 91, 3505 (1969).
- 4. D.T. HELFINGER et D.J. CRAM, J. Amer. Chem. Soc., 93, 4754 (1971).
- 5. N.L. ALLINGER, B.J. GORDON, S.E. HU et R.A. FORD, J. Org. Chem., <u>32</u>, 2272 (1967).
- 6. N. FUJIMOTO, T. SATO et K. HATA, Bull. Chem. Soc. Japan, <u>40</u>, 600 (1967).
- 7. I. TABUSHI, H. YAMADA, Z. YOSHIDA et R. ODA, Tetrahedron, 27, 4845 (1971).
- I. TABUSHI, H. YAMADA, K. MATSUSHITA, Z. YOSHIDA, H. KURODA et R. ODA, Tetrahedron, <u>28</u>, 3381 (1972).
- 9. R. FLAMMANG, H.P. FIGEYS et R.H. MARTIN, Tetrahedron, <u>24</u>, 1171 (1968).
- 10. K. BURRI et W. JENNY, Helv. Chim. Acta, 50, 1978 (1967).
- 11. S. MEYERSON, I. PUSKAS et E.K. FIELDS, J. Amer. Chem. Soc., 88, 4974 (1966).
- 12. M. SHEEHAN et D.J. CRAM, J. Amer. Chem. Soc., <u>9</u>1, 3544 (1969).
- 13. G.M. WHITESIDES et D.W. LEWIS, J. Amer. Chem. Soc., <u>93</u>, 5914 (1971).
- 14. H.L. GOERING, J.N. EIKENBERRY et G. KOERMER, J. Amer. Chem. Soc., <u>93</u>, 5913 (1971).